Borel ideals Katětov order Topological Ramsey spaces

Borel ideals and Ramsey spaces

Sonia Navarro Flores

National University of Mexico Winter School of Abstract Analysis 2019

January 27th, 2019

Borel ideals Katětov order Topological Ramsey spaces

Ideals

Definition

A family $\mathcal{I} \subset \mathcal{P}(X)$ of subsets of a given set X is an *ideal* on X if

• for
$$A, B \in \mathcal{I}, A \cup B \in \mathcal{I}$$
,

3 for
$$A, B \subset X, A \subset B$$
 and $B \in \mathcal{I}$ implies $A \in \mathcal{I}$ and

 $X \notin \mathcal{I}.$

A filter is the dual notion of ideal.

< <p>Image: Image: Imag

< ∃ →

Examples

• The eventually different ideal \mathcal{ED} is such that $A \in \mathcal{ED}$ iff $(\exists m, n \in \omega)(\forall k > n)(|\{l : (k, l) \in A\}| \le m)$

2
$$\mathcal{ED}_{\text{fin}} = \{A \cap \Delta : A \in \mathcal{ED}\}$$
 where $\Delta = \{(n, m) \in \omega \times \omega : n \leq m\}.$

- The ideal Fin × Fin is such that $A \in Fin \times Fin$ iff $\{n : \{m : (n, m) \in A\} \notin Fin\} \in Fin.$
- The summable ideal $\mathcal{I}_{\frac{1}{n}} = \{A \subseteq \omega : \Sigma_{n \in A} \frac{1}{n} < \infty\}.$

Definition

Given an ideal \mathcal{I} on X:

We denote by *I*⁺ the family of *I*-positive sets, i.e. subsets of *X* which are not in *I*.

If Y ∈ \mathcal{I}^+ , we denote by $\mathcal{I} \upharpoonright Y$ the ideal $\{I \cap Y : I \in \mathcal{I}\}$ on Y.

We will consider ideals on countable sets, so we pretend that they are, in fact, ideals on ω .

This order, called *Katětov* order was introduced by M. *Katětov* in 1968 to study convergence in topological spaces. It has been used to clasify ultrafilters and ideals for mathematicians as Baumgartner, Solecky, Brendle and Hrusak.

Definition

Given two ideals ${\mathcal I}$ and ${\mathcal J}$ on ω we shall say that:

- \mathcal{I} is *Katětov* below \mathcal{J} ($\mathcal{I} \leq_{\kappa} \mathcal{J}$) if there is a function $f: \omega \to \omega$ such that for all $I \in \mathcal{I}$, $f^{-1}[I] \in \mathcal{J}$.
- ② *I* and *J* are *Katětov* equivalent (*I* ≃_K *J*) if *I* ≤_K *J* and *J* ≤_K *I*.

Borel ideals Katětov order Topological Ramsey spaces

Rudin-Keisler order

Definition

Let \mathcal{F}, \mathcal{G} be filters on ω , we say that \mathcal{F} is Rudin-Keisler below \mathcal{G} ($\mathcal{F} \leq_{\mathrm{RK}} \mathcal{G}$) if there exists a function $f : \omega \to \omega$ such that $X \in \mathcal{F}$ if and only if $f^{-1}[X] \in \mathcal{G}$.

Topological Ramsey spaces are an abstraction of the Ellentuck space that satisfy a general version of Ellentuck's Theorem. In the book "Introduction to Ramsey spaces", Todorcevic defines axioms $\mathbf{A.1}-\mathbf{A.4}$ by extracting properties of the Ellentuck space building on prior work of Carlson-Simpson. Topological Ramsey spaces has been studied by several mathematicians because of their applications to Tukey order theory and Bannach spaces.

If $T \subset [\omega]^{<\omega}$ and \Box is an end-extension order on T, we say that T is a tree if for every $t \in T$, the set $\{s \in T : s \sqsubset t\}$ is well ordered. If (T, \Box) is a tree, $[T] = \{\bigcup C \subseteq \omega : C \in [T]^{\omega} \text{and}(\forall s, t \in C)(s \sqsubset t \text{ or } t \sqsubset s\}.$

Definition.

An ideal ${\mathcal I}$ is a TRS if there exists some tree ${\mathcal T} \subset [\omega]^{<\omega}$ such that:

- For every $t \in T$, there is some $s \in T$ such that $t \sqsubset s$.
- For every $t \in T$, $X \in [T]$ such that $t \subset X$, there exists $Y \in [T]$ such that $t \sqsubset Y$ and $Y \subseteq X$.
- For every $t \in T$, $X \in [T]$ such that $t \subset X$, if $\mathcal{O} \subset succ(t)$, there exists $Y \in [T]$ such that $Y \subseteq X$ and $succ(t) \cap [Y]^{<\omega} \subseteq \mathcal{O}$ or $succ(t) \cap [Y]^{<\omega} \subseteq \mathcal{O}^c$.
- For every $X \in \mathcal{I}^+$ there exists $Y \in [T]$ such that $Y \subseteq X$.

| 4 同 🕨 🔺 🗏 🕨 🤘

If \mathcal{I} is an ideal TRS with witness \mathcal{T} , $([\mathcal{T}], \subseteq)$ is a topological Ramsey space.

Nash-Williams Theorem (Todorcevic)

For every family \mathcal{F} of \Box –incompatible members of T, if $X \in [T]$ and $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ then there exist $i_0 \in 2$ and $Y \in [T] \cap [X]^{\omega}$ such that $[Y]^{<\omega} \cap \mathcal{F}_{i_0} = \emptyset$.

Let $\mathcal{I}_{\mathcal{H}^2}$ be the ideal such that $A \notin \mathcal{I}_{\mathcal{H}^2}$ iff $(\forall n \in \omega)(\exists s, t \in [\omega]^n)(s \times t \subset A).$

Examples

Ideals \mathcal{ED}_{fin} , Fin × Fin and $\mathcal{I}_{\mathcal{H}^2}$ are TRS.

< ∃ >

For every ideal \mathcal{I} on ω . Let $r_{\mathcal{I}}$ be the least natural number k such that $(\forall m)(\forall c : [\omega]^2 \to m)(\exists X \in \mathcal{I}^+)(|c''[X]^2| = k)$.

Proposition

If \mathcal{I}, \mathcal{J} are ideals on ω such that $\mathcal{I} \leq_{\kappa} \mathcal{J}$, then $r_{\mathcal{I}} \leq r_{\mathcal{J}}$.

So if \mathcal{I} and \mathcal{J} are Katětov equivalent, $r_{\mathcal{I}} = r_{\mathcal{J}}$.

i Let m be a natural number and $c: [\omega]^2 \to m$ be a coloring.

$$\text{ii} \ (\exists f:\omega\to\omega)(\forall I\in\mathcal{I})(f^{-1}[I]\in\mathcal{J}).$$

$$\begin{array}{l} \text{iii} \ \, \text{Let} \ \varphi : [\omega]^2 \to m \text{ be such that} \\ \varphi(\{m,n\}) = c(\{f(m),f(n)\}). \\ \text{iv} \ \, (\exists Y \in \mathcal{J}^+)(|\varphi''[Y]^2| \leq r_{\mathcal{J}}). \\ \text{v} \ \, X = f[Y] \in \mathcal{I}^+ \text{ and } |c''[X]^2| = |\varphi''[Y]^2| \leq r_{\mathcal{J}}. \end{array}$$

Therefore $r_{\mathcal{I}} \leq r_{\mathcal{J}}$.

< A >

< ∃ >

Proposition(Laflamme)

If $\mathcal{I} = \mathcal{ED}_{\mathrm{fin}}, r_{\mathcal{I}} = 3.$

Proposition(Dobrinen,N)

If $\mathcal{I} = \mathcal{I}_{\mathcal{H}^2}, r_{\mathcal{I}} = 5.$

It is a consequence of last Proposition that ideals $\mathcal{ED}_{\mathrm{fin}}$ and $\mathcal{I}_{\mathcal{H}^2}$ are not Katetov equivalent.

Proposition(N)

If \mathcal{I} is an ideal TRS and \mathcal{G} is a $(\mathcal{P}(\omega)/\mathcal{I}, \subset)$ -generic filter, then $\mathcal{P}(\omega) \mathcal{I}$ forces a Ramsey ultrafilter \mathcal{U} . $(\mathcal{U} \leq_{RK} \mathcal{G})$.

Proof(for \mathcal{ED}_{fin}).

- For every $X \in \mathcal{G}$, let $D(X) = \{m \in \omega : (\exists n \in \omega) ((m, n) \in X)\}.$
- Let U be the ultrafilter generated by the collection of D(X) with X ∈ G.
- Let $c: [\omega]^2 \to m$ be a coloring.
- Define $\mathcal{D} = \{X \in \mathcal{ED}_{fin}^+ : D(X) \text{ is c-homogeneous}\}.$

< ロ > < 同 > < 三 > < 三 >

- Take $X \in [T]$.
- For every $i \in m$, let $\mathcal{F}_i = \{t \in T_2 : c(\pi(t)) = i\}$.
- By N-W Theorem there exists $i_0 \in m$ and $Y \in [T] \cap [X]^{\omega}$ such that $T_2 \cap [Y]^{<\omega} \subseteq \mathcal{F}_{i_0}$.
- Hence \mathcal{D} is dense on $\mathcal{P}(\omega)/\mathcal{I}$.
- $Z \in \mathcal{G} \cap \mathcal{D}$ implies that $D(Z) \in \mathcal{U}$ is c-homogeneous.

Proposition

A consequence of the last Proposition is that the summable ideal is not a TRS.

(There are no rapid filters RK below the filter $(\mathcal{P}(\omega)/\mathcal{I}_{\frac{1}{a}}, \subseteq)$)-generic.

References

- Dobrinen, N. and Todorcevic, S., A new class of Ramsey-classification Theorems and their Applications in the Tukey theory of Ultrafilters, Part 1, Transactions of the American Mathematical Society, 2014, Vol.366.
- Dobrinen, N., Mijares, José and Trujillo, T., Topological Ramsey spaces from Fraïssé classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points, 34 pp, Archive for Mathematical Logic, special issue in honor of James E. Baumgartner.
- Hrusak, Michael, Katětov order on Borel ideals, Accepted to Archive for Mathematical Logic.
- Kechris, Alexander S., Classical Descriptive Set Theory, Springer-Verlag, 1994.
- S Trujillo,T., Topological Ramsey spaces, associated